
Chapter 19 > > > > > > > > > > > > > > >

Time Estimates

The requirements analysis, game
design, and technical design phases
have us cover the most difficult part of
project planning: identifying the tasks
we must perform. Second to identifying
the tasks is estimating how long it will
take to complete them.

All great games are unique works
of engineering and art carried out pas-
sionately by a team of game developers
for an extended length of time. It is
impossible at the start of the project to
identify all the tasks that must be per-
formed, and it is more than impossible
to estimate exactly how long it will take
to finish a creative effort that involves
new bits of engineering and inspiration.
Despite this challenge, if you walk into
a publisher’s office and announce at the
end of your presentation that your pro-
ject will take as long as it takes until
the game is done, you will find yourself
ushered out of the office after the pub-
lisher picks himself up off the ground.
This calls for a story:

Recently Taldren required the ser-
vices of an outside accounting firm;
they quoted a price for their services
that was a range, not a fixed bid. I dug a
little deeper and it turned out they did
not know if it was going to take them
20 or 40 hours to complete this
accounting task for us. I gave it a
moment’s thought and realized that the
accounting folks sure have their

business model more mature than the
typical game developer. I am sure it is
true that he does not know if it will
take 20 hours, 40, or somewhere in
between to perform this accounting
work. However, I could not help being
offended since the business model we
game developers use is a fixed bid. I
told the accountant that we must agree
to a fixed price for projects between
30,000 and 60,000 man-hours! It should
be common sense that it is far easier to
estimate a task that a single person will
be charged with and is expected to last
less than a week compared to a project
requiring two dozen developers for
nearly two years. Yet if I used the same
range as the accountant, I would quote
our publisher’s advances (fees) like
this:

Publisher: “Congratulations, I
believe in your game, and we will pick
it up. But first, how long will it take to
complete and how much in terms of
advances will you require?”

Erik: “We have given it consider-
able thought and planning and have
settled on a $2.6 million budget and
ready in 18 months at the low end and
$5.2 million and three years at the
upper end; we will let you know as we
progress.”

And that is when the publisher falls
off his chair laughing and I am ushered
out of the building.

Chapter 19: Time Estimates 259

The funny thing is that in reality
many, many game projects are actually
run as in the scenario above. More
often than not developers find out
mid-project that they can no longer
ignore the underbid, and the release
date is looming near and the game is
not ready. It is not uncommon for some
games to receive multiple new infu-
sions of time and cash. These failures
to accurately bid a project force publish-
ers to be even more defensive in their
positions and demand even more profit
from future game development deals.

I now realize why independent
game companies are so much more effi-
cient than the military and TV and
movie industries—we have to be! That
is something I am genuinely proud
of—how much work we all get done
with relatively modest resources. That
being said we do need to do a better job
of estimating our projects and slowly
weaning our publishers off of time and
money budgets that estimate the few-
est dollars and have a non-zero
probability of creating the game.

Now let us get on with the
estimating.

Two Ways to Estimate a Task

I have a very simple view when esti-
mating the time required for a task to
be completed; it is always one of two
answers: How much time will it take to
complete the task or how long do we
have to complete the task.

Time BoxingTime Boxing

I find that in practice it is a lot easier to
deal with tasks that simply have to be
executed by a certain time. I first heard
the term “time boxing” from a technical
director at Electronic Arts Sports when
I asked him how he estimates how long
it will take to do something that is tech-
nically very challenging when there is
not a standard reference for how long it
will take to complete. He replied that
when you simply do not know how long
a task will take, spend your estimating
time figuring out how long you could
afford to be working on the problem.
That becomes your time estimate that
you later plug into your Gantt chart. If
you run out of time and the task is still
not complete and you intend to honor

your time budget, you must abandon
the task: Cut the feature, fall back to a
less exciting version of the feature, or
make some other cut to compensate for
the loss. If you determine that you can-
not perform a satisfactory cut and you
are out of time, then you are stuck with
going to your executive management
team and advising them of your
dilemma and requesting additional time
and money, an activity you should
avoid.

The elegant thing about time box-
ing is that you do not need to get
bogged down in estimating something
that is fundamentally unestimatable,
and at the same time you have a power-
ful motivational tool for the devel-
oper(s) who must carry out the work. If
someone knows that their work will
simply be thrown away unless they
complete it by a certain date, and that
certain date is backed up by a rationally
developed project plan, then they dig
deep into themselves, concentrate, and
usually find great satisfaction by

260 Chapter 19: Time Estimates

pushing themselves to new levels of
personal achievement to meet the
deadline.

JARGON: Time boxing—placing a rigid
time constraint around a task that is
based on the project not being able to
afford more time on that particular task.

Task EstimatingTask Estimating

The core of the chapter is estimating
how long it will take to implement
some software or create some artwork.
The artwork side is considerably more
reliable in predicting than the software
side.

Art

Typically your game’s art assets can be
broken down into a certain number of
models, textures, animations, rooms,
levels, sprites, tiles, and so on. Esti-
mating is then very straightforward;
create one or two of these assets and
assume that the rest will take as long or
even a bit shorter as the team develops
more experience with the tools and the
desired artistic direction.

Have your artists keep careful
records of how long it is actually taking
to create the art assets. After about one
month of production, stop and hold a
meeting and review their data on how
long it is taking them. Also follow up on
anything that appears to be taking lon-
ger than expected and ask if there is
anything that could be done to make
them more productive. Usually at this
point I find that the estimates are
trending downward. It is vitally impor-
tant to task the artists, like all develop-
ers, at less than 100 percent capacity to
allow for the usual time loss of illness,
vacation, system upgrades, and unusual
family events. In the artists’ case, how-
ever, there is also the inevitable need to

go back and iterate on specific areas of
the game when an area is undergoing
design drift or rapid technological
development.

Design

My weakest area of task estimation is
design. I have always led the design
efforts at Taldren, and I am constantly
undervaluing my time. As an entrepre-
neur I think it is perfectly normal to
add another 10 hours of tasks to a
70-hour workweek. I say this glibly,
without boasting, but it is the truth.
This makes it difficult for the designers
and producers below me, as I expect
from them the same unflagging devo-
tion to the company, and I feel I am not
currently allocating enough time for
design and production management. I
recently returned from a visit to South
Korea where I spent several days learn-
ing about how a game developer there,
Makkoya, goes about its business of
making games. One of the most strik-
ing impressions I had was that fully
one-fourth of the company was devoted
to game design! At Taldren, I am sure
that one-fourth or more of the person-
nel enjoy significant responsibilities and
authority in game design, but until this
summer we never had a full-time
employee exclusively devoted to game
design. Game design is iterative and
creative; this conspires to make it diffi-
cult to estimate how long it will take to
complete a task. I generally allow
approximately one man-day for the
design of a screen or panel depending
on its complexity. For larger systems
such as how the combat system of an
RPG system might work, a week might
be appropriate to rough out the entire
system and perhaps another two to
three weeks to flesh out all of the

Chapter 19: Time Estimates 261

details. In the end, you should have the
designer responsible for the design
task estimate how long it will take to
complete the task. If game design is
somewhat analogous to writing, then
you should expect your designer to be
able to generate three to ten pages of
design a day. I feel uncomfortable
attempting to distill the efforts of game
design into too simplistic a metric.
Please contact me if you have some
better methods of estimating design
tasks.

Programming

Programming tasks are notoriously dif-
ficult to estimate; in fact, it could be
argued that the theme of this book
revolves around the difficulty of plan-
ning software. There is no standardized
method for predicting how long some
programming task ought to take. There
is no standard such as the number of
lines of code per day per developer.

For example, if you create an
incentive for programmers based on
the number of lines of code, they will
simply write more lines of code. This
happened when Apple and IBM worked
together on the Taligent operating sys-
tem. The IBM engineers had labored
under a number-of-lines-produced-per-
day incentive program, while the Apple
engineers were new to the system. The
Apple engineers, being superb problem
solvers and optimizers, realized they
would be paid more money to write
more lines of code, so they did—to the
detriment to the project. Similar prob-
lems occur at the close of a project if
management proposes bonuses based
on the number of bugs closed per
developer. Consciously or subcon-
sciously, folks will realize that quality is
not sought during development and

they might as well be sloppy and collect
the bug fixing awards at the end of the
month.

Hire the best folks you can and
avoid using incentive programs that
motivate your programmers to go into
another direction besides making the
best game possible, on time and on
budget.

There are roughly four categories
of programming tasks:

1. Difficult, due to the design being
vague, a time risk

2. Tedious but not a time risk
3. Simple and not a time risk
4. Difficult and a time risk

Category number one: tasks are diffi-
cult and time-consuming because they
are vague. In my opinion, this is the
number one reason why schedules
break in my firm opinion. Schedules do
not break because the developer is
pushing the envelope too hard or
because the developer has explicitly
agreed to too many features. Rather,
the schedule breaks when the devel-
oper agrees to perform a task at a high
level without digging deep enough to
find all of the required subtasks.

This is also by far the most difficult
process to consistently master: task
identification. That is why so much of
this book focuses on raising the formal-
ism of the game development process
by involving a separate requirements
gathering phase and Unified Modeling
Language for specifying software
requirements—tasks.

So how do you know if a task has
been broken down enough? My simple
rule is to ask the programmer, “How
are you going do X?”

The response “I don’t know; when
I get there I will figure it out,” is an

262 Chapter 19: Time Estimates

easy red flag to spot. This task requires
immediate attention to break it down
into smaller tasks.

Better is this response: “Um, I will
start with looking at Y for inspiration
and then I will plug away for a while
until I am confident that this is the best
method for performing X in a separate
test-bed framework. Then I will inte-
grate the new code.” That response
may well be detailed enough to feel
comfortable depending on that task’s
unique circumstances. You will need to
make the call if it requires deeper
analysis.

Of course the reply “Oh that’s easy.
I wrote up my attack plan earlier in the
day and sent it to you in an email; didn’t
you get it?” makes me feel all warm
and fuzzy inside like a good beer.

Often the real difficulty is that the
project is not far enough along to break
down a task into finer resolution. To
address this I demand much more reso-
lution for the tasks upcoming in the
next 60 days or so than I require of
tasks much later in the schedule. I
highly recommend meeting at the
beginning of each milestone to assess
the quality and depth of your game and
technical design material for the
upcoming milestone and quickly assign
someone to drive to the required reso-
lution in advance of the rest of the
development team. In this manner your
technical directors and art directors
should act like scouts for an army
scouring the future and reporting back
and suggesting course changes.

Category two tasks are tedious and
time consuming but low risk. These
tasks are not especially difficult to esti-
mate nor do they create much worry
that something unexpected will occur
to everyone’s unpleasant surprise. The

danger that lies in these sorts of tasks
is that due to their tedious, inglorious
nature, the folks assigned to perform
them will settle into a lower energy
state, as their area is apparently not
critical. This attitude could cause these
tasks to go over budget, and again the
resource assigned to the task may not
understand the impact of running over
schedule. There is not much trick in
estimating these tasks; rather the chal-
lenge is maintaining a sense of
importance and urgency in these tasks
as the developer is working on them.
You will need to show them what they
will be working on next or how they
could be helping out in other more
exciting areas if they push through
their slogful of tasks.

Category three tasks are simple
and are not a time risk. Not much to be
said here; these are straightforward.
However, I do encourage you to load up
your project with as many of these
types of tasks as possible! As with long,
tedious tasks, there is a minor danger
of small, simple tasks seeming unim-
portant, and some time loss could occur
here. However, I find this to be a rela-
tively rare occurrence as most people
derive pleasure from closing out their
tasks, and the smaller tasks give them
more apparent velocity on their task
closure rate.

Category four tasks are the diffi-
cult, time-risk tasks that we touched on
earlier with time boxing. These are the
glory tasks usually assigned to your
most senior programmers: create a new
3D engine, create a physics engine,
reverse engineer something obscure,
create a technique for doing anything
no one has done before. The first thing
to do with these types of tasks is be
sure they are not masquerading as

Chapter 19: Time Estimates 263

category one tasks, where the goals
and design have been vaguely defined
and that the current task appears diffi-
cult due to the breadth of the task. For
example, “create a new 3D engine” is
grossly vague as a task and could
involve anywhere from the efforts of a
few months to many man-years
depending on the sophistication of the
3D engine requirements. This is clearly
a candidate for breaking down into
smaller steps. A better example of a
category four task would be when John
Carmack set out to put curved surfaces
in Quake III. That would be an excel-
lent task to wrap a time box around.
(However, in John Carmack’s case I
would guess he just worked on it until
he was satisfied with his efforts.)

At the end of the day you really
want to eliminate as many of these
types of tasks as possible from your
game project. They act like festering
boils on an otherwise healthy game
project plan. Be sure each of these cat-
egory four tasks that remain in your
project are key features both in game-
play and in a marketing sense. If there
is significant doubt that anyone will
miss this particular feature, you should
probably cut it and save yourself the
schedule pressure.

Each Shall Estimate Thy OwnEach Shall Estimate Thy Own

Tasks

A key rule that I follow under all practi-
cal circumstances is to have my

programmers estimate their own tasks.
This has several powerful benefits. The
most powerful is that you have full
buy-in from the developer that they
have a reasonable schedule to follow.
Another benefit is that you are growing
your employee’s strength in project
planning and management by having
them participate or, even better, shape
the final game development schedule.

How will they derive their own
time estimates? At the end it will come
down to a very subjective calculation
that distinguishes humans from com-
puters. We are able to soak in data from
a myriad of sources—past performance,
expected performance, level of interest,
motivation, and guesses—and in a rela-
tively short period of time estimate
how long it will take to perform a task.

Yep, that’s it; at the end of the day
it will come down to just a gut estimate.
Of course the simpler the item is, such
as implementing a dialog box, the more
straightforward the estimating process
is. However, I do not know of anyone
who has a software-project-estimator-
o-matic device for coming up with
estimates.

Save Your Plans and CompareSave Your Plans and Compare

To improve your developers’ skill at
estimating, take care not to throw away
their original estimates, and take the
time to compare them with the actual
results achieved during production.
This should always be educational no
matter how senior the programmer.

Making the Plan

Now that we have identified all of our
tasks and have generated time esti-
mates for them, it is time to flip to the

next chapter and roll all of this data into
a plan!

264 Chapter 19: Time Estimates

Chapter 20 > > > > > > > > > > > > > > >

Putting It All Together

into a Plan

A lot of game companies use Microsoft
Project to plan their game project
schedules. MS Project is decidedly
stronger at planning schedules than
maintaining schedules. There are many
annoying difficulties getting a workable
schedule out of MS Project, and it
seems that maintaining the tasks is
certainly the most time-consuming
chore a producer will face.

There are a host of other project
planning products that you may use, but
from running my “Real Methods of
Game Production” roundtables at the
Game Developers Conference in 1999
and 2002, I have found there is no
clearly superior tool to MS Project.

Project planning and task tracking
are two separate activities in my mind,
and all of the project planning software
packages including MS Project purport
to do both tasks well. The real truth is
these software packages do a decent
job at planning a project, but when it
comes time to update the schedule by
closing tasks and inserting new tasks,
the process is slow and tedious. Many
times I have simply started new sched-
ules to plan out from that current point
to the end of the project. Mind you, it is
not impossible; it just takes a lot of
time.

The larger game development
teams schedule maintenance that is so
time consuming they have a dedicated
human on their team updating the
schedule full time! Part of the problem
is that game projects with 100 to 800
man-months lie somewhere between
the two classes of project management
software: the dozen or so man-months
of effort for a marketing campaign
(which MS Project is excellent for) and
the hundreds of man-year efforts for
major construction projects (for which
you need very expensive software such
as Primavera and a small group of dedi-
cated project managers).

Okay, now on with the overview of
MS Project.

The goal of a schedule is to orga-
nize all of the project’s tasks, illustrate
the dependencies between tasks, track
progress, level tasks, and assist in sce-
nario planning.

Dependencies need special care as
you do not want some of your develop-
ment team to stall for lack of art, for
example, nor do you want a critical fea-
ture to fail to be completed on time for
a given milestone because the key com-
ponent of this critical feature must be
completed by just one programmer who

Chapter 20: Putting It All Together into a Plan 265

another critical

task.
Tracking progress is simply marking

off tasks that have been completed.

Scenario planning is using the soft-
ware to analyze different “what-if”
scenarios such as “What if we cut the
map editor altogether?”

Let’s Create a Schedule for FishFood!

Go ahead and fire up your copy of MS
Project. A wizard tool will pop up sug-
gesting that you take up the wizard’s
offer; decline the offer, close, and close
the window.

Create a New Project FileCreate a New Project File

A blank project will be staring at you;
dismiss this project and select File |
New to create a new project file. A pro-
ject information pop-up dialog will
solicit either a start date or end date.
Choose a start date to schedule from
rather than an end date to schedule
back from.

Project, like all Office products, offers
a properties dialog that you may fill
out with a bunch of dull details such
as author name, manager, company, etc.
If you feel the need to decorate your
files with such details, choose File |
Properties.

What Is a PERT/Gantt ChartWhat Is a PERT/Gantt Chart

Anyway?

There are a myriad of diagrams, charts,
and reports you are able to generate
with Project. A good-sized project will
be composed of thousands of bits of
information from task names to
assigned resources, start dates,
priorities, and dependencies. The view
you choose will reflect what you are
trying to get a good look at. The two
most common types of charts are Gantt
and PERT. These were introduced in
Chapter 10.

To review, the PERT chart is the
visually simpler chart with boxes for
tasks that are drawn left to right with

266 Chapter 20: Putting It All Together into a Plan

Properties for an MS project

MS Project’s File | Properties dialog

dependency links between the boxes.
The boxes may be detailed with dura-
tion and resource name.

The advantage of the PERT chart
is that it displays the critical path of a
project very well. It stands out like the
trunk of a tree with non-critical path
tasks stemming from the trunk as
branches or sometimes as solitary
boxes. PERT charts are fun to fill in as
tasks are completed. The disadvantage
to a PERT chart comes when you are
charting more than just the high-level
tasks, say fifty to a thousand tasks.
When the number of tasks reaches that
size, it takes a lot of paper to print out
the chart, and the dependency lines
may become too tangled to make much
visual sense. Another minor disadvan-
tage of the PERT chart is that since it
is such a graphical layout, the project

manager might get distracted for an
inordinate amount of time fiddling with
the boxes and getting the layout of the
boxes to look good. (This apparently
remains a minor AI problem to solve
someday: well-laid-out PERT charts.)
Bottom line: PERT is good for over-
views and easily constructed from the
Gantt chart.

The Gantt chart consists of a
spreadsheet of data on the left-hand
side such as task ID, task name, start
date, end date, duration, and resource
name (who is going to do the job). On
the right-hand side are the tasks graph-
ically portrayed as bars of varying
length proportional to their duration
laid out left to right underneath the
project calendar displayed at the top of
the chart.

Chapter 20: Putting It All Together into a Plan 267

A sample PERT chart

The main advantage of the Gantt chart
is that it is good for displaying up to
several hundred tasks resulting in a
finer granulation in your schedule.
(The finer the granulation in your
schedule, the more likely you are plan-
ning all of the required tasks, and thus
the more likely you will be on time.)

Dependencies between tasks are
drawn as simple arrows between the
tasks. The Gantt chart is easy to read
both from top to bottom, with the con-
vention of the earlier tasks at the top,
and from left to right as time passes.

The main disadvantage to the
Gantt chart is, of course, the key
strength of the PERT chart: that it is
difficult to see at a glance the critical
path of the project. Fortunately, with
Project it is simple to enter your task
information under the Gantt chart and
later choose to view your scheduling
information from any number of views
such as the PERT chart.

Start Entering TasksStart Entering Tasks

Entering task information in Project
really could not be easier. Pick a row
and start by simply typing in the name
of the task in the Task Name column,
and enter the estimated time for dura-
tion. Bam, you have entered a basic
task.

Now let’s talk about task names. It is
important to be sure the name of a task
includes a strong verb like “purchase
workstations” or “test logon protocol”
or “implement save game” rather than
the vague “workstations,” “logon pro-
tocol,” and “save game.” The strong
verb makes the difference between a
task and a topic. I still make the mis-
take of using topic names rather than
task names; this is usually a strong hint
from my subconscious that this topic
has not been thought out enough for
me to feel comfortable articulating dis-
crete tasks.

Another common mistake I see in
game project schedules, including my
own, is that the schedule is composed
of only features to be implemented and
assets to be created. You may be won-
dering what else there is to game
production. Well, it does take actual

268 Chapter 20: Putting It All Together into a Plan

A sample Gantt chart for a simple game called FishFood!

Focusing on a task name and durationTE
AM
FL
Y

Team-Fly®

time to test all of the deliverables in the
milestone before you send it off to the
publisher. It takes time to respond to
the publisher’s feedback, it takes time
to go to E3, and it certainly takes loads
of time creating the E3 build! It takes
time to train developers on new tools
such as when you switch from Charac-
ter Studio to Maya. It takes time to
create all of the documentation at the
start of the project. It takes time to rec-
oncile the schedule with reality. It
takes time to submit a build to the
license manager and get feedback. It
takes time to plug in the sound effects
and voice-overs. And it certainly takes
time to balance and tweak your games.

Tasks Are Performed byTasks Are Performed by

Resources

The final key bit of information that you
need to add to your task besides task
name and duration is who will do the
work—the resource. Enter the first
name, last name, initials, job title, or
alphanumeric string you want in the
resource column.

If you do not know at this time who will
be performing the task, as you want to
see how things will stack up before

deciding, guess, flip a coin, or choose
somebody at this point. We will use
Project’s task leveling tool later to help
us sort out who should be doing what
for maximum productivity.

Where Does All of This TaskWhere Does All of This Task

Information Come From?Information Come From?

An excellent question to ask at this
point is where these task names, time
estimates, and durations are coming
from.

Experienced game developers who
have led large portions of games and
who are tasked with creating a schedule
for a type of game project they are
familiar with will be able to sit down
with Project and immediately dash off a
few dozen tasks before pausing to
think. However, at some point both the
experienced project manager and the
less experienced project manager will
need to come up with tasks in a more
formal manner. By far the best (and
only) way to come up with the tasks is
to get them from the people who will be
carrying out the work, or at the very
least the leads of each of the portions of
the game project. For example, your
lead animator should come up with
estimates for all of your animation. I
would advise against your lead pro-
grammer, who might specialize in
graphics, coming up with the online
multiplayer tasks; those should come
from the multiplayer programmer
herself.

You may choose to collect these
tasks from a rather informal brain-
storming session, or you might send an
email out to everyone to review the
design documents (game and technical)
and come up with the tasks for their
area of the project. The size and scope

Chapter 20: Putting It All Together into a Plan 269

Adding a human resource to a project

of your project will determine what
works best for your project. In general,
if I am trying to execute a mini-project
like getting a build ready for E3 or
developing a demo for a brand-new
game we will be pitching to publishers,
the informal brainstorming approach
works most efficiently for me. I reserve
the more formal approach, where each
resource is given perhaps a week to
break down his area of the schedule
into composite components, for the
beginning of full production.

The reason it is so important to get
the developers themselves to come up
with the tasks is threefold: First, they
are the experts in that field, and they
will be better able to break the problem
down into smaller pieces. Second, you
want them to participate in the schedul-
ing so that they understand better what
they need to accomplish, why, and by
when. Finally, by giving the developer
the authority to set the time estimates
you will achieve a far greater “buy-in”
and sense of obligation to get the job
done in a reasonable amount of time
compared to when the schedule is
passed down by a heavy (and often less
knowledgeable) hand from above.

Organizing TasksOrganizing Tasks

I have to admit I like building MS Pro-
ject Gantt charts (it is a good thing to
like your job), and Project makes it easy
to organize the tasks in your Gantt
chart. There are nine levels of indenta-
tion to facilitate the logical grouping of
tasks. As the tasks are coming in from
your various team members, plug them
into the chart, push them around, and
indent them; have fun. Now is the time
to make the schedule logical and clean.
In fact, this aspect of project making is
so easy I am able to do it in real time

for small projects with half a dozen of
my guys riding shotgun over my shoul-
der, shouting out tasks and time
estimates, and am able to keep up and
cook a schedule together. Some people
might shudder at the apparent lack of
thought put into a schedule crafted in
that manner; however, I have found
that all schedules are merely estimates
of what needs to happen. Also, most
people’s guesstimates of how long a
task will take to complete will not be
far off from a more carefully crafted
estimate (both of which are bound to
differ more relative to the actual time it
took to complete the task compared to
the difference between the two tasks).

Draw dependencies between tasks
with reluctance; do not think that the
more lines you draw on the Gantt chart
the more accurate your schedule will
become. Rather, group related tasks
under super-tasks and draw dependen-
cies between these chunkier bits.

Task GranularityTask Granularity

How fine in time resolution should your
task estimations be—a day or a week
or some other time? I have been back
and forth across the issue and yes, the
finer the resolution the more accurate
and reliable the project is likely to be. If
you could measure every task down to
a quarter of a day, you would have tre-
mendous resolution to work with, and
you would have a Gantt chart that
would impress the most jaded of execu-
tive management teams. The problem
with schedules with ultra-fine task res-
olution is that they invariably become
wrong quite quickly and require a tre-
mendous amount of producer time to
fix: Delete these 10 tasks, add these 20
tasks, modify the duration of these two
dozen tasks, and so on.

270 Chapter 20: Putting It All Together into a Plan

Thus, my new philosophy on task
resolution for schedules is to cut the
tasks into pieces as small as possible
but no smaller than the producer has
time to maintain. This is really just
being honest with yourself and knowing
what your time limitations are for main-
taining the project plan. I would say
that a schedule that has 15 developers
working on a game for 15 months
should have somewhere between 300
and 600 tasks in the project plan.

How to Account for Vacation andHow to Account for Vacation and

Sick TimeSick Time

When creating your schedule you must
account for vacation and sick time. I
have to admit I was vexed for quite a
while on how to best manage the plan-
ning for vacation and sick time. I mean,
how would you know that your lead
programmer would come down with
bronchitis and lose seven days 13
months from now? If you try to stick
tasks in the project plan called “vaca-
tion” or “sick days,” you are creating a
bunch of little falsehoods that will
annoy you as you try to perform project
leveling. Project will toss these tasks
about all over the place, and you will
start placing dependency lines or spe-
cial instructions for the timing of each
and every one of these tasks.

After thinking about the sick and
vacation day problem for a long time, I
have finally developed an elegant and
easy solution: I modify the working
calendar for all of the developers at
Taldren and change Fridays to half-
days. This effectively places two full
days of fluff per month into the sched-
ule, leaving 24 working days a year for
sick and vacation time. Take whatever
your company manual says about days
off and adjust your Friday time off up

and down to suit your tastes (I recom-
mend going a little bit conservative).

I like this method for handling
unschedulable tasks so much I might
start writing off part of Mondays for
project maintenance, system upgrades,
interviews, dog and pony shows, and
other unplanned tasks that tend to
affect everyone in the company at one
time or another. By keeping these tasks
separated on Mondays vs. Fridays, I
will be able to adjust either one up or
down as I develop more accurate his-
torical data.

Remember Odd TasksRemember Odd Tasks

Scour your collective brains to identify
weird or odd tasks like trade shows,
submission to hardware manufacturers,
the installer, the auto-patcher, customer
service, fan interaction, and so on. This
is one area where experienced organi-
zations have an edge on start-ups; the
start-ups generally only plan for the
absolute minimum of tasks yet still
have to complete all the tasks that
everyone else does as well.

Time Leveling in ProjectTime Leveling in Project

The main advantage of a project track-
ing package such as MS Project over a
task tracking database is the ability to
analyze the loads between the various
team members and perform task
leveling.

There are two principal tools for
performing task leveling in MS Project
that complement each other in your
quest for a clean, balanced schedule
across your team: the automated level-
ing tool and the resource usage view.

After you plug in all of the tasks
with the required bits of info of who and
how long, click on Tools | Resource
Leveling | Level Now….

Chapter 20: Putting It All Together into a Plan 271

Despite the intimidating number of
choices on this dialog box, there are
really only two meaningful options: to
level by ID or to level by Priority, Stan-

dard. For simple schedules with less
than 300 tasks, I find that leveling by
ID tends to work well as the Gantt
chart will most likely be laid out with
early tasks at the top of the chart and
later tasks at the bottom of the chart.
The Priority sort is useful when you
have truly large project files and you
have attached priority weighting to
each of your tasks (if you do not weight
individual tasks, then the leveling will
behave as if you had chosen the ID
sort).

What MS Project does during the
leveling is look at all of the dependen-

cies between the tasks across all
resources and lay them out in time in
order to best accommodate a smooth
path to completion. As you know, com-
puters are not intelligent; as such, MS
Project will make a finite number of
dumb placements of tasks. Your job is
to look over these errors and correct
them through adding dependency lines,
priority weightings, or time constraints
such as “start no earlier than X date.”
After iterating for a while you will end
up with a schedule that makes sense.

All done? No. If you click on the
Resource Usage View button, you will
discover that your task assignments
have caused an uneven allocation of
time across your team, as shown in the
following figure.

You will see that some of your develop-
ers have large gaps of idle time in their
schedule, and others are acting as the
long pole and causing the game to
sprawl out past the final delivery date.
How do you fix this? You have to under-
stand what MS Project is telling you. It
is saying that the long pole folks have
been assigned too many critical path
tasks and the others with gaps in their
schedules are twiddling their thumbs
while waiting for the critical path folks
to deliver the goods. The solution is to
look for tasks belonging to the critical
path folks that may be transferred to

272 Chapter 20: Putting It All Together into a Plan

The Resource Leveling dialog in MS Project

The resource usage view before leveling

the people with gaps. This is very much
an iterative process as you are looking
for clever bits of reassignment that will
neatly cover the gaps in some folks’
schedules while eliminating the spikes
in the critical path folks’ schedules.

To solve the difference between
developer A with a gap and developer B
with a spike, you might have to rotate a
subset of tasks through developer B
and developer D to make it all work
out. The goal is to massage your sched-
ule until your resource usage view
looks like a nice clean brick of time
with all gaps filled and the whole team
finishing up at the roughly the same
time.

Let it JellLet it Jell

All freshly minted project plans are full
of errors, inconsistencies, and omis-
sions. All of my project plans needed
several passes to get into shape, and
the difference from the first draft to the
first revision is always the most dra-
matic. You will not be able to fix these
flaws the same day that you create the
schedule. Instead you must let it jell for
at least a week and then come back and
read through the schedule carefully
with the leads of your team with a

critical eye. Take the time to do this
and you will make a schedule at least
twice as strong as it was just a week
previously. Novelists must do this with
finished manuscripts; producers should
also set aside their schedule for a time
and revise.

How to Distribute the Schedule toHow to Distribute the Schedule to

the Teamthe Team

A fine schedule that is locked up and
kept in the oracle’s tower is not very
useful. A project plan must be a com-
munication device used by the whole
team. Every time I think of producers
who keep the schedule information
secret, I squint like Clint Eastwood and

twitch my fingers looking for a gun.
Managing a team is not a management
vs. the developers contest! Take the
schedule and paste it up on the wall! As
the team members get tasks accom-
plished, have them go up and highlight
completed tasks (more on measuring
progress in the next chapter).

Take the time to create customized
reports for each of your team members.
MS Project boasts a number of reports
including To Do Lists and a Who Does
What list, as shown on the following
page.

Chapter 20: Putting It All Together into a Plan 273

After leveling

Also, you can sort the main Gantt chart
by resource name and print out just
that section of the schedule. Print out

mini Gantt charts for each team mem-
ber to stick up on their own walls—
they’ll love it!

274 Chapter 20: Putting It All Together into a Plan

A sample To Do List report for the Black9 project

