
394

Chapter 14

The Design Document

We have said throughout this book that digital game
development is an inherently collaborative medium.
In the last two chapters we have looked at all the var-
ious types of people who make up that collaborative
environment, as well as the stages of the production
process. One of the most important parts of manag-
ing this process is communicating the overall vision
of the game to each and every team member. If your
team is very small, or if you are working alone, this
might not be a problem. But most games are com-
plex enough, and most teams are large enough, that
the most eff ective way to ensure communication is to
write down that vision as well as a detailed plan for
executing it. This plan is called the design document,
and the game designer is its primary author and care-
taker. In recent years, many teams have begun using
online tools such as wikis to create and manage their
design documents in a collaborative environment.
Wikis can include text, images, and other media and
changes to the design that can be tracked by users.

Whether you use a wiki or standard word pro-
cessing so� ware, the goals of the design document

are the same: to describe the overall concept of the
game, target audience, gameplay, interfaces, con-
trols, characters, levels, media assets, etc. In short,
everything the team needs to know about the design
of the game. The artists will use it to lay out inter-
faces that refl ect the features that you and the team
have designed, the programmers will use it to defi ne
the so� ware modules for those features, the level
designers will use it to understand how their level fi ts
into the overall story arc, the producer will use it to
generate an accurate budget and schedule, and the
QA department will use it to develop a comprehen-
sive test plan.

As team sizes, schedules, budgets, and the
overall complexity of game designs have grown
exponentially, the need for clear, comprehensive
documentation has become unmistakable. Most
game developers and publishers today would never
think of going into production without a detailed
design document, and updating this living document
throughout production is a critical responsibility of
the game designer.

Chapter 14

The Design Document

Communication
and
the
Design
Document
A good design document is like sound blueprints for
a building. Everyone on the team can refer to and
add comments while they do their separate tasks and
 understand how their work fi ts into the game as a whole.
The writing of the document facilitates collaboration
and useful conversations between team members.

Without design documentation to direct their
eff orts, the individuals on a team might interpret what
they know about the game in their own unique ways,
working hard, but not necessarily toward the same
ends. When it comes time to integrate that work, art
might have been made to unusable specs, technology

might refl ect out-of-date features, or the essence of the
gameplay might have been lost in the level designs.

To create an eff ective design document, the game
designer needs to work with every other member of
the team to make sure that the areas of the document
aff ecting their work are accurate and achievable. In
this way, the writing of the document itself generates
communication. By conferring on the details of the
game via text, wireframes, concept art, fl owcharts,
etc., team members have to think through the entire
game, from the highest-level vision concepts to the
lowest-level art specifi cations, the fi le types, and the
font sizes. Game developers tend to be visual people,
so supplementing the document with lots of visuals is
generally a good thing.

There is a tendency for design documents to
become very large. This is especially true if you use a
wiki to write your design document because the col-
laborative management of these online documents
allows them to grow very easily. However, a good

design document can (and should) be succinct.
Eff ective design documents can communicate core
information in 50 to 100 pages so that a busy execu-
tive or programmer can fi nd the areas that aff ect
them quickly and easily. If there are areas that need
to be expanded on as production moves forward, one
strategy is to create subdocuments that delve into
these areas more deeply.

Always keep in mind that you are not writing
the design document for the sake of writing it—your
objective is communication, so do whatever it takes
to accomplish that goal. Documentation is not a sub-
stitute for talking to your team. Just because you
have wri� en it down, do not assume that everyone
has read and understood your vision. Writing the
document provides a process for establishing com-
munication and serves as a touchstone for the entire
team in terms of creative and technical designs, but
it is not a substitute for team meetings and in-person
communication.

The game industry has no standard format for docu-
menting designs. It would be nice if there were a set
formula or style to follow, like the standards for screen-
plays or architectural blueprints, but this simply does
not exist. Everyone does agree that a good design
document needs to contain all the details required to
create a game; however, what those details are will be
aff ected by the specifi cs of the game itself.

In general, the contents of a design document can
be broken up into the following areas:

· Overview and vision statement
· Audience, platform, and marketing
· Gameplay
· Characters (if applicable)
· Story (if applicable)
· World (if applicable)
· Media list

The design document can also include technical
details, or these can be articulated in a separate

 document called a technical specifi cation. The tech-
nical specifi cation or the technical sections of the
design document are generally prepared by the tech-
nical director or lead engineer.

Exercise 14.1: Researching Design Documents
To get a feeling for the various ways that designers
approach the writing of design documents, go on
the Web and do a search using Google for “game
design documents.” You will fi nd dozens posted on
the Internet. Pick two and read through them. What
are their strengths and weaknesses? If you were a
member of the design team, would you be able to
execute the design as described? What questions
do you have for the designers a� er reading the
documents?

When you approach the writing of a design
 document, it is easy to get distracted by the scope
of the document and forget the ultimate goal: to

Contents
of
a
Design
Document

Contents of a Design Document 395

 communicate your game design to the production
team, the publisher, the marketing team, and anyone
else with a vested interest in the game. This is one
reason why we advise you not to write your design
document until you have built and playtested a work-
ing prototype of your idea. Having this type of con-
crete experience with your proposed gameplay can
make all the diff erence in your ability to articulate
that gameplay in the design document.

You should also think of your design document
as a living document. You will likely have to make a
dozen passes before it is complete, and then you will
need to constantly update it to refl ect changes that
are made during the development process. Because
of this, it is important to organize your document
modularly. If you organize your document carefully
from the beginning, it will be easier to update and
manage as it grows in size and complexity. Also, as we
mentioned earlier, it will be easier for each group to
fi nd and read the sections that aff ect their work.

Using a wiki to create your design document will
naturally enforce this idea of modularity. You will want
to create separate pages for the various areas of your
design and subpages for areas that require deeper
descriptions, images, charts, or other materials.

The following outline is an example of how you
might organize your design document. We have noted
under each section the types of information it should
contain. Keep in mind that our goal here is not to give
you a standard format that will work for every game,
but rather to provide you with ideas for the types of
sections you might want to include. Your game and
its design should dictate the format you use for your
own document, not this outline.

Design History
A design document is a continuously changing
 reference tool. Most of your teammates won’t have
time to read the whole document over and over
again every time that a new version is released, so it
is good to alert them to any signifi cant modifi cations
or updates that you have made. As you can see,
each version will have its own section where you list
the major changes made in that iteration. If you use
a wiki, this section will be replaced by the editing
history feature of the so� ware. This makes it simple

1.

and eff ortless to track changes to the document and
to backtrack changes if it becomes necessary.

 1.1 Version 1.0
 1.2 Version 2.0
 1.2.1 Version 2.1
 1.2.2 Version 2.2
 1.3 Version 3.0

2. Vision statement
This is where you state your vision for the game. It
is typically about 500 words long. Try to capture the
essence of your game and convey this to the reader
in as compelling and accurate a way as possible.

 2.1 Game logline
 In one sentence, describe your game.
 2.2 Gameplay synopsis
 Describe how your game plays and what the

user experiences. Try to keep it concise—no
more than a couple of pages. You might want to
reference some or all of the following topics:

· Uniqueness:
 What makes your game unique?
· Mechanics:

 How does the game function? What is the
core play mechanic?

· Se� ing:
 What is the se� ing for your game: the

Wild West, the moon, medieval times?
· Look and feel:

 Give a summary of the look and feel of
the game.

3. Audience, Platform, and Marketing
3.1 Target audience
 Who will buy your game? Describe the demo-

graphic you are targeting, including age, gender,
and geographic locations.

3.2 Platform
 What platform or platforms will your game run

on? Why did you choose these platforms?
3.3 System requirements
 System requirements might limit your audience,

especially on the PC, where the hardware varies
widely. Describe what is required to play the
game and why those choices were made.

396 Chapter 14: The Design Document

3.4 Top performers
 List other top-selling games in the same

market. Provide sales fi gures, release dates,
 information on sequels and platforms, as well
as brief descriptions of each title.

3.5 Feature comparison
 Compare your game to the competition. Why

would a consumer purchase your game over
the others?

3.6 Sales expectations
 Provide an estimate of sales over the fi rst year

broken down by quarter. How many units will
be sold globally, as well as within key markets,
like the United States, England, Japan, etc.?

4. Legal Analysis
Describe all legal and fi nancial obligations regard-
ing copyrights, trademarks, contracts, and licensing
agreements.

5. Gameplay
5.1 Overview
 This is where you describe the core gameplay.

This should tie directly into your physical or
so� ware prototype. Use your prototype as the
model, and give an overview of how it functions.

5.2 Gameplay description
 Provide a detailed description of how the

game functions.
5.3 Controls
 Map out the game procedures and controls.

Use visual aids if possible, like control tables and
fl owcharts, along with detailed descriptions.

 5.3.1 Interfaces
 Create wireframes, a type of functional

visualization described on page 400, for
every interface the artists will need to
create. Each wireframe should include
a description of how each interface
 feature functions. Make sure you detail
out the various states for each interface.

 5.3.2 Rules
 If you have created a prototype, describ-

ing the rules of your game will be much
easier. You will need to defi ne all the
game objects, concepts, their behaviors,

and how they relate to one another in
this section.

 5.3.3 Scoring/winning conditions
 Describe the scoring system and win

conditions. These might be diff erent for
single player versus multiplayer or if you
have several modes of competition.

5.4 Modes and other features
 If your game has diff erent modes of play, such

as single and multiplayer modes, or other fea-
tures that will aff ect the implementation of
the gameplay, you will need to describe them
here.

5.5 Levels
 The designs for each level should be laid out

here. The more detailed the be� er.
5.6 Flowchart
 Create a fl owchart showing all the areas and

screens that will need to be created.
5.7 Editor
 If your game will require the creation of a pro-

prietary level editor, describe the necessary
features of the editor and any details on its
functionality.

 5.7.1 Features
 5.7.2 Details

6. Game Characters
6.1 Character design
 This is where you describe any game charac-

ters and their a� ributes.
6.2 Types

 6.2.1 PCs (player characters)
 6.2.2 NPCs (nonplayer characters): If your

game involves character types, you
will need to treat each one as an object,
defi ning its properties and function-
ality.

 6.2.2.1 Monsters and enemies
 6.2.2.2 Friends and allies
 6.2.2.3 Neutral
 6.2.2.4 Other types
 6.2.2.5 Guidelines
 6.2.2.6 Traits
 6.2.2.7 Behavior
 6.2.2.8 AI

Contents of a Design Document 397

7. Story
7.1 Synopsis
 If your game includes a story, summarize it

here. Keep it down to one or two paragraphs.
7.2 Complete story
 This is your chance to outline the entire story.

Do so in a way that mirrors the gameplay. Do
not just tell your story, but structure it so that
it unfolds as the game progresses.

7.3 Backstory
 Describe any important elements of your story

that do not tie directly into the gameplay. Much
of this might not actually make it into the game,
but it might be good to have it for reference.

7.4 Narrative devices
 Describe the various ways in which you plan

to reveal the story. What are the devices you
plan to use to tell the story?

7.5 Subplots
 Because games are not linear like books and

movies, there might be numerous smaller sto-
ries interwoven into the main story. Describe
each of these subplots and explain how they
tie into the gameplay and the master plot.

 7.5.1 Subplot #1
 7.5.2 Subplot #2

8. The Game World
If your game involves the creation of a world, you
need to go into detail on all aspects of that world.
8.1 Overview
8.2 Key locations
8.3 Travel
8.4 Mapping
8.5 Scale
8.6 Physical objects
8.7 Weather conditions
8.8 Day and night
8.9 Time
8.10 Physics
8.11 Society/culture

9. Media List
List all of the media that will need to be produced.
The specifi cs of your game will dictate what catego-
ries you need to include. Be detailed with this list,

and create a fi le naming convention up front. This
can avoid a lot of confusion later on.
9.1 Interface assets
9.2 Environments
9.3 Characters
9.4 Animation
9.5 Music and sound eff ects

10. Technical Spec
As mentioned, the technical spec is not always
included in the design document. O� en it is a
separate document prepared in conjunction with
the design document. This spec is prepared by the
technical lead on the project.
10.1 Technical analysis

 10.1.1 New technology
 Is there any new technology that you

plan on developing for this game? If so,
describe it in detail.

 10.1.2 Major so� ware development tasks
 Do you need to do a lot of so� ware

development for the game to work? Or
are you simply going to license someone
else’s engine or use a preexisting engine
that you have created?

 10.1.3 Risks
 What are the risks inherent in your

 strategy?
 10.1.4 Alternatives
 Are there any alternatives that can

lower the risks and the cost?
 10.1.5 Estimated resources required
 Describe the resources you would need

to develop the new technology and so� -
ware needed for the game.

10.2 Development platform and tools
 Describe the development platform, as well

as any so� ware tools and hardware that are
required to produce the game.

 10.2.1 So� ware
 10.2.2 Hardware

10.3 Delivery
 How do you plan to deliver this game? On

DVD, over the Internet, on wireless devices?
What is required to accomplish this?

398 Chapter 14: The Design Document

 10.3.1 Required hardware and so� ware
 10.3.2 Required materials

10.4 Game engine
 10.4.1 Technical Specs
 What are the specs of your game

engine?
 10.4.2 Design
 Describe the design of your game

engine.
 10.4.2.1 Features
 10.4.2.2 Details
 10.4.3 Collision detection
 If your game involves collision detec-

tion, how does it work?
 10.4.3.1 Features
 10.4.3.2 Details

10.5 Interface technical specs
 This is where you describe how your interface

is designed from a technical perspective.
What tools do you plan to use, and how will it
 function?

 10.5.1 Features
 10.5.2 Details

10.6 Controls’ technical specs
 This is where you describe how your con-

trols work from a technical perspective.
Are you planning on supporting any unusual
input devices that would require specialized
 programming?

 10.6.1 Features
 10.6.2 Details

10.7 Lighting models
 Lighting can be a substantial part of a game.

Describe how it works and the features that
you require.

 10.7.1 Modes
 10.7.1.1 Features
 10.7.1.2 Details
 10.7.2 Models
 10.7.3 Light sources

10.8 Rendering system
 Rendering is a big part of games these days, and

the more details you can provide, the be� er.
 10.8.1 Technical specs
 10.8.2 2D/3D rendering

 10.8.3 Camera
 10.8.3.1 Operation
 10.8.3.2 Features
 10.8.3.3 Details

10.9 Internet/network spec
 If your game requires the use of the Internet,

LANs, or wireless networks, you should make
the specs clear.

10.10 System parameters
 We won’t go into detail on all the possible

system parameters, but suffi ce to say that
the design document should list them all and
describe their functionality.

 10.10.1 Max players
 10.10.2 Servers
 10.10.3 Customization
 10.10.4 Connectivity
 10.10.5 Web sites
 10.10.6 Persistence
 10.10.7 Saving games
 10.10.8 Loading games

10.11 Other
 This section is for any other technical specifi -

cations that should be included, such as help
menus, manuals, setup and installation rou-
tines, etc.

 10.11.1 Help
 10.11.2 Manual
 10.11.3 Setup

We want to emphasize that the previous outline
is merely a list of suggested topics that might need
to be addressed to communicate your design. Every
game will have its own specifi c needs, and the organi-
zation of your design document should refl ect these
needs.

Under each of the sections in your design docu-
ment, you need to answer all the questions that a
team member might have. For example, the char-
acter designs section would include drawings and a
description of each character in the game, while the
levels section would include not only the intended
gameplay for each level but explanations of any story
 elements that would be found in each level.

Contents of a Design Document 399

400 Chapter 14: The Design Document

Notice how the fl owchart shows all possible paths
through the game and all possible results, including
how the player wins and loses and what happens if
the player disconnects. You can use fl owcharts to
map out all sorts of processes within your game. The
more detailed you are, the easier it will be to commu-
nicate your ideas to your teammates.

A� er you create your fl owcharts, you will need
to sketch out the main interfaces for the game in
 wireframe format. Figure 14.3 shows an interface wire-
frame from Wheel of Fortune, an early concept sketch
for the interface, and the fi nal interface as released.
If you look closely, you will see that several changes
were made during production, notably in the way that
chat is handled in the game. Wireframes are not the
end of the design process; they are the beginning.
They give the game designer, artists, programmers,
and producers a visual reference point to discuss the
game in its early stages. They can also be usability
tested at this point. Changes can be made to the
design at this time, when they cost nothing to make,
rather than months down the road when they would
have much higher repercussions.

Exercise 14.2: Flowchart and Wireframes
Either on paper or using a so� ware tool like Microso�
Visio or Flow Charting PDQ, create a full fl owchart for
your original game design. Next create a complete set
of wireframes for every interface state in the game.
Then annotate your wireframes with callouts describ-
ing every feature as described in the next paragraph.

Now that you have created a prototype, a fl ow-
chart, and a full set of wireframes, you will have a
very good idea of what you need to communicate
in your design document. You will also have a set of
visual aids for explaining the features of your game.
Most people can absorb information more clearly
from visual displays like your wireframes than from
long paragraphs of text explaining the features of
your game. Because of this, your wireframes are
not only a good tool to help you think through your
game, but they are an excellent reference point for

Before you sit down to write your design document,
you should have spent a considerable amount of
time thinking through the gameplay. The best way to
do this, as we already discussed, is to build a physi-
cal or so� ware prototype of your game and playtest
it, improving and expanding your design until you
have a solid foundation for your full game. Only a� er
you have gone through several iterations of proto-
typing can you really be ready to write your design
document.

Many designers will move to an outline and start
pounding out the text of the design document at this
point. We recommend fl owcharting your entire game
and building a set of wireframe interfaces for every
screen in the game fi rst. A wireframe is a rough sketch
or diagram that shows all the features that will need to
be included on an interface screen. By sketching out
both the fl ow of the game and every required screen,
you will be forced to think through the entire player
experience for the game, fi nding inconsistencies and
issues before any artwork or programming has been
done.

Figure 14.2 is an example of a game fl owchart
created using typical so� ware, like Microso� Visio.
This is for an online multiplayer version of the Wheel
of Fortune game. As you can see, it illustrates how
players move through the game and interact with it.

Writing
Your
Design
Document

14.1 Character sketches from
Jak & Daxter and Ghost

your readers. As you outline your document, use
the fl owchart and wireframes to explain the areas
and features of the game. You might want to create
 callouts on your wireframes explaining how various
features will work. These callouts can be sup-
ported by bullet points that expand on the visual
diagrams.

Ideally, by working through your concept from
prototype to fl owchart and wireframes to documen-
tation, you will fi nd that the document is actually quite
simple to write. Instead of being faced with the mam-
moth task of thinking through the game while you
write the document, you will have broken the tasks
down into smaller stages that allow the game itself to
dictate how the design document should be wri� en.

As with the rest of your design experience, the
document should be an iterative process. Do not try
to complete it in a single pass. Let it grow over time.
Fill out sections as they become clear, then go back
to other sections and refi ne them.

Exercise 14.3: Table of Contents
Outline the table of contents for your original design
document. Consider every aspect of your prototype,
fl owchart, and wireframes when you are deciding
how to describe your game. Draw from the example
documents you downloaded from the Web and the
generic template found in this chapter.

14.2 Flowchart for multiplayer Wheel of Fortune

Writing Your Design Document 401

You might realize while writing a later section
that your thoughts from an earlier section need to
be revised. Because each aspect of a game system
is interrelated to the others, you will be continually
going back and forth between the sections, modifying
and updating them. Here is an example as to how the
process might go for the level design section:

· First pass: Make outline of all levels and give them
names.

· Second pass: Write one-paragraph descriptions
of what takes place on each level.

· Third pass: Design maps for each level.
· Fourth pass: Populate maps with content.

14.3 Interface wireframes, sketch,
and fi nal interface for
multiplayer Wheel of Fortune

402 Chapter 14: The Design Document

Indie
Game
Jam﹕
An
Outlet
for
Innovation
and

Experimental
Game
Design
by Justin Hall

Austin Grossman is fl eeing through a city, fervently searching through tens of thousands of shuffl ing, pixellated
citizens for the wide sombrero of the man who wants to kill him. Austin’s movements with the mouse are
jerky, and he’s holding his breath. Suddenly he hears a loud reverberating ping off to his le� . Austin whirls to
face the sound. The crowd parts, and before Austin can react, the man in the sombrero shoots him down.

Thatcher Ulrich watches over Austin’s shoulder, gently nibbling his fi nger. Austin and his colleague, Doug
Church, are playing Thatcher’s game, Dueling Machine. In Dueling Machine, one player hunts another using
sonar pings to fi nd or avoid their enemy amidst tens of thousands of innocent bystanders. Few games
use sound in such an integral way; this idea came from Marc LeBlanc. At the time, Marc worked for Visual
Concepts, a video game development studio owned by Sega. Thatcher worked at Oddworld Inhabitants, a
video game development studio owned in part by Microso� . Given the competitive nature of the modern
game industry, it doesn’t make much sense that these two would be designing a video game together.

Thatcher and Marc are both working on Dueling Machine as part of the Indie Game Jam. Tired of calcifi -
cation in commercial video games, a small group of game designers decided to jump-start some experimen-
tal game designs. In March 2002, they built a system for simultaneously displaying up to 100,000 moving
characters on the screen at one time. Then they invited a dozen designer–programmer friends from a half a
dozen game companies to join them for collective quick and dirty garage-style programming in a barn on a
marina in Oakland, California.

The roots of electronic entertainment lie in these sorts of collaborations, in garages and basements and
dank laboratories—places where people gathered over rudimentary machines to make virtual worlds. Thirty
years ago, the people responsible for electronic entertainment were not yet game professionals, they were
simply dedicated hobbyists. They tinkered with computers and code to make small simulations, establishing
rules and parameters that their friends would break.

These tinkerers gave birth to a $20 billion industry. Electronic gaming has expanded rapidly; now 30 years
later, most games are made by massive teams of specialized developers working for years with a marketable
product in mind. Still, there are some folks who hope to encourage a generative creative spirit, to inject
some creativity and vitality into a medium that’s increasingly conservative.

This Indie Game Jam was organized in part by programmer Chris Hecker, who sees a games industry
that is “too risk adverse.” Hecker is eager to see an independent subculture for video games; a fi lm festival
or garage band ethos feeding new ideas to commercial developers.

When the Indie Game Jam started, Hecker worked out of the top fl oor of a red barn in a cluster of
Victorian buildings surrounded by bland offi ce parks and industrial sites. This clu� ered, compact offi ce
served as a retreat for a revolving cast of independent programmers—laptops working on a futon propped up
with old CPU cases between stacks of old graphics cards, books on math theory, and antique PC games.

Hecker opened up his Oakland offi ce to serve as the site of the fi rst few Indie Game Jams. Over a bowl
of dry noodles at a nearby Vietnamese restaurant, Hecker speaks passionately about the evolution of game-
play: “Games of the future will be interactive not only at the second-to-second level, which we focus on now,

Indie Game Jam: An Outlet for Innovation and Experimental Game Design 403

404 Chapter 14: The Design Document

but also at the minute-to-minute and hour-to-hour levels. This means that not only can you walk le� or right
interactively, but your decisions impact the overall fl ow of the game.” Deeper interactions require richer
simulations; Hecker gets excited about physics, the system of game rules determining interactions between
physical objects in games. Do you want to stack those crates over there against the door to keep the bad
guy from following you into this room to eat you alive? As Hecker points out, most games today won’t allow
that kind of strategy. Crates are for climbing on or smashing up only.

In March 2003, the second Indie Game Jam replaced 100,000 sprites with one main actor—the human
body. The usually crowded Indie Game Jam headquarters was packed with projectors and webcams taped
to the tops of halogen lamps and hanging off other hazardous supports. Building on Zack Simpson’s Shadow
Garden engine, 14 programmers had one weekend to design games that used the shadow of a human body
cast on a wall as an interface for electronic entertainment. Casey Muratori and Michael Sweet created
Owl Simulator, where a player’s outstretched arms controlled their fl ight path. In Atman Binstock’s Squisy
Marshmallow Maze, two players struggle to move their colored block through a maze, using their shadow to
block the progress of the other player. Squisy Marshmallow Maze games typically devolved into wrestling
matches, a kind of physicality mostly unseen in video games until the advent of the Nintendo Wii, years later.

Indie Game Jam participants in action
Top le� : Chris Hecker and Doug Church working on their game FireFighter. Top right: Chris Corollo and Brian
Sharp of Ion Storm working on their game Wrath. Bo� om: 2002 Indie Game Jammers, le� to right: Austin
Grossman, Robin Walker, Art Min, Brian Jacobson, Chris Hecker, Sean Barre� , Zack Simpson, Ken Demarest,
Jonathan Blow, Doug Church, Brian Sharp, and Chris Corollo. Photos by Justin Hall.

Programmer/designer Doug Church explains in an e-mail, “The game industry has always been about
smoke and mirrors, and making the correct tradeoff s. So even li� le baby steps and experiments which
seem silly now may lead to some real and unexpected successes later.” Now that game development sched-
ules have extended out beyond 18 months, it can be diffi cult to work through a few diff erent game design
 concepts. The format of the Indie Game Jam weekend codefest is a good uninhibitor; as Doug explains,
“Given a lack of research money and time, Game Jam-like ‘no-time-to-think-just-type-and-see-what- happens’
sort of events may help provide some of the ideas which eventually help us make progress.”

IGJ co-organizer Sean Barre� is a refugee from the commercial game industry. Since leaving Looking
Glass Studios in 2000, Barre� works independently to make so� ware that goes beyond “people doing
simple games and high-end graphics.” Barre� has been integrating personality and confl icting priorities in
a hovercra� game he’s programming: “Your squadmates have personal agendas (derived from their alle-
giances to various political and religious groups) and become satisfi ed or unsatisfi ed with you based on
whether you cooperate with those agendas in game.” Choosing which objects to blow up might not seem
like much of a step toward richer interaction, but any in-game motivation other than scoring and linear prog-
ress is remarkable. As Barre� points out about game making, “We do violent confl ict great, but we don’t do
any other kind of confl ict, especially interpersonal relationship sorts of confl ict, at all.”

In 2005, the fourth Indie Game Jam used an engine with human models from The Sims to make games
about human interaction. By then, Indie Game Jam contributors included people drawn from other disci-
plines beyond programming: art, sound design, game theory, and education. And now Indie Game Jams
were occurring elsewhere. In Lithuania in 2002, a group of young programmer/designers got together in
a room, made games on a short deadline, and released them free online, using the fi rst Indie Game Jam
engine. Soon Toronto, Dallas, Boston, Ohio, and Nordic Game Jam groups launched, listing themselves on
the Indie Game Jam page on Wikipedia.

Within years, schools, companies, and developer groups around the world were spending occasional
weekends to hack at electronic play: professional and amateur programmers alike unleashed by a week-
end of fast prototyping in a shared, supportive atmosphere. As commercial game industry budgets grow to
accommodate ambitious graphics and rigid licenses, these kinds of development experiments give people
a chance to poke at new ideas. Some rather mainstream developers are fi nding happiness in smaller, infor-
mal collaborations, some of which even evolve into commercial titles sold as PC or console downloads.

A weekend-long Indie Game Jam is usually not enough time to develop deep, engrossing games. Most
of the participating programmers must leave happy fun prototyping land for their day jobs, and participating
designers might not have the technical skills, tools, or time to accommodate big visions. For people who
spend their days working on large, slow-moving entertainment so� ware, an Indie Game Jam gives them a
compressed freedom where personal inclination and a sense of playful experimentation direct game design
more than market concerns.

On the last day of the fi rst Indie Game Jam, most of the games had been fi nished and many of the
programmers had headed home. Sean Barre� stood over Chris Hecker’s shoulder as Hecker’s dirty glasses
refl ected tens of thousands of tiny fi gures being mowed down by a single warrior on-screen. As Hecker
handily killed with mouse and keyboard, the camera panned out slowly until his character was shown to be
surrounded by an impossible sea of enemies. There was clearly no way he could survive. The artful futility of
Barre� ’s Very Serious RoboDOOM put a wide grin on Hecker’s face.

Indie Game Jam: An Outlet for Innovation and Experimental Game Design 405

406 Chapter 14: The Design Document

Each Indie Game Jam begins to explain how games can meet broader social needs: beyond athlete,
gangster, and space marine power fantasies. Beyond our current vocabulary of “fi rst person shooter” and
“real time strategy.” Past “a� ack” and “jump,” where “manipulate” and “convince” are possible game verbs.
Where learning to make your own rough dra� games is part of being an active player.

More information about the Indie Game Jam can be found online at www.indiegamejam.com and on
Wikipedia at en.wikipedia.org/wiki/Indie_Game_Jam.

About the Author
Justin Hall participates in digital culture and electronic entertainment. Present at the birth of the popular
Web, Hall invested his mortal soul in the exchange of personal information online. Later consumed by
machine stimulation, Hall set out to study video games to be� er understand his lifelong computer babysi� ers.
He fi nished his MFA in interactive media at the University of Southern California in 2007. From there Hall
went on to work with the team at GameLayers Corporation as CEO as they fashioned ongoing electronic
play out of daily life through “Passively Multiplayer Online Games.”

Exercise 14.4: Fleshing out Your Design
Document
Flesh out your design document using your table of
contents, fl owchart, wireframes, and the documen-
tation you created while designing your prototype,
such as your concept document, rules, etc. Work
with your team members to complete each section
as described earlier.

Writing the design document will help you clarify
the details of your design. When the document is writ-
ten, it is used to manage team members from both
the publisher and the developer. The core concept
as detailed by the design document will be approved
by the publisher before the team moves into produc-
tion. Then the document will evolve as the project
progresses.

Conclusion
a cubicle writing in isolation for weeks on end will
produce a document that is far less valuable than
a designer who engages the team, includes them in
the process, and works with them to build out each
section.

By working with the team, a designer will not only
wind up with a be� er design document but will also
help focus the team on the project at hand. This is how
living design documents are created, and when you
have a living document in which everyone is an act-
ing coauthor, it becomes a force in and of itself, which
serves to unite the team and give them a common plat-
form from which to understand the game as it evolves.

In this chapter, you have learned how to take your orig-
inal game concept from the prototype to a full design
document or design wiki. You have created detailed
fl owcharts and wireframes for every area of your game.
You have worked with your team, if you have one, to
fl esh out both the technical and creative tasks that will
need to be accomplished to make your game a reality.

Writing and updating your design document is a
monumental and sometimes tedious responsibility.
The design document can be a useful tool or a mill-
stone around the designer’s neck. Always remember
that the purpose of your design document is com-
munication and articulation. A designer huddled in

